- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Qiao, Yi-Ling (3)
-
Leng, Jiaqi (2)
-
Lin, Ming (2)
-
Wu, Xiaodi (2)
-
Chen, Peter Yichen (1)
-
Clayton, Connor (1)
-
Gan, Chuang (1)
-
Jatavallabhula, Krishna Murthy (1)
-
Jiang, Chenfanfu (1)
-
Li, Xuan (1)
-
Lin, Ming C (1)
-
Peng, Yuxiang (1)
-
Yang, Gengzhi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
Belgrave, D (1)
-
Fan, A (1)
-
Globerson, A (1)
-
Mackey, L (1)
-
Paquet, U (1)
-
Tomczak, J (1)
-
Zhang, C (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)
-
Li, Xuan; Qiao, Yi-Ling; Chen, Peter Yichen; Jatavallabhula, Krishna Murthy; Lin, Ming; Jiang, Chenfanfu; Gan, Chuang (, International Conference on Learning Representations (ICLR))
-
Leng, Jiaqi; Peng, Yuxiang; Qiao, Yi-Ling; Lin, Ming; Wu, Xiaodi (, Advances in neural information processing systems)We formulate the first differentiable analog quantum computing framework with specific parameterization design at the analog signal (pulse) level to better exploit near-term quantum devices via variational methods. We further propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling, which leads to a quantum stochastic gradient descent algorithm for scalable gradient-based training in our framework. Applying our framework to quantum optimization and control, we observe a significant advantage of differentiable analog quantum computing against SOTAs based on parameterized digital quantum circuits by {\em orders of magnitude}.more » « less
An official website of the United States government

Full Text Available